Ginkgoites patagonica (Berry) comb. nov. from the Eocene of Patagonia, Last Ginkgoalean Record in South America

Author(s): Liliana Villar de Seoane, N. Rubén Cúneo, Ignacio Escapa, Peter Wilf and María A. Gandolfo,

Source: International Journal of Plant Sciences, (–Not available–), p. 000

Published by: The University of Chicago Press
Stable URL: http://www.jstor.org/stable/10.1086/680221
Accessed: 24/02/2015 19:49

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
GINKGOITES PATAGONICA (BERRY) COMB. NOV. FROM THE EOCENE OF PATAGONIA, LAST GINKGOALEAN RECORD IN SOUTH AMERICA

Liliana Villar de Seoane,1,* N. Rubén Cúneo,† Ignacio Escapa,† Peter Wilf,‡ and María A. Gandolfo§

"División Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Av. Angel Gallardo 470 (1405), Buenos Aires, Argentina; †Museo Paleontológico “Egidio Feruglio,” Av. Fontana 140 (9100), Trelew, Chubut; ‡Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA; and §School of Integrative Plant Science, Cornell University, Ithaca, New York, USA

Editor: Michael Dunn

Premise of research. The ginkgophytes are an ancient group of gymnosperms with a long history starting during the late Paleozoic and reaching the present with the unique species Ginkgo biloba L. In order to better characterize the early and middle Eocene (ca. 52.2 and 47.7 Ma) leaf species Ginkgo patagonica Berry from northwest Patagonia, Argentina, new specimens were studied, focusing on their morphological and anatomical characters.

Methodology. The specimens were studied with LM, epifluorescence, SEM, and TEM.

Pivotal results. The diagnosis of the species Ginkgoites patagonica comb. nov. is enlarged to include anatomical and ultrastructural epidermal characters. Herein, the species Ginkgoites patagonica is shown to have characteristics that clearly separate it from the genus Ginkgo L., and it is therefore recombined to the genus Ginkgoites Seward.

Conclusions. Eocene Ginkgoites patagonica was present in plant communities, and it is the last representative of a still poorly understood southern ginkgophyte lineage that was distinct from the ancestors of G. biloba of the Northern Hemisphere.

Keywords: Ginkgoales, cuticles, early-middle Eocene, Patagonia, Argentina.

Introduction

The ginkgophytes are an ancient group of gymnosperms with a long history starting during the late Paleozoic and reaching the present with the unique species Ginkgo biloba L. (Taylor et al. 2009). Their origin has been associated with Permian families such as the Trichopytiaceae and the Dicranophyllaceae, from which true ginkgoaleans are thought to have evolved during the Mesozoic (Archangelsky and Cúneo 1990; Stewart and Rothwell 1993; Villar de Seoane 1997; Del Fueyo and Archangelsky 2001; Crane 2013; Del Fueyo et al. 2013).

Based on the limited record of reproductive organs, the genus Ginkgo L. can be traced back into the Middle Jurassic (Zhou and Zheng 2003). However, their origin is hypothetically possible when considering the high abundance of isolated Ginkgo-like leaves found in several Permian formations of Argentina (Feruglio 1933, 1942; Cúneo 1987). Unfortunately, there are no methods for attributing isolated Ginkgo-like leaves to the living genus Ginkgo with confidence based only on foliar characters. Discussions on this matter date to the late nineteenth century (see Watson et al. 1999, among others), and as a result, in order to deal with the prolific record of Ginkgo-like leaves, Seward (1919) erected the genus Ginkgoites to differentiate many fossil leaves from the modern species Ginkgo biloba. Nevertheless, the morphological boundaries of Seward’s concept were not very precise. Debate continued on this matter of whether to use other generic fossil names or the genus Ginkgo for isolated fossil leaves (see, e.g., Harris and Middleton 1974). Some of these disagreements were settled when Ginkgo-like leaves, including Ginkgoites, were found associated with reproductive structures very different from those of G. biloba, for example, in Yimaia, Karkenia, and even Ginkgo, demonstrating a larger past generic diversity (see Del Fueyo and Archangelsky 2001; Zhou et al. 2002, 2012; Zhou and Zheng 2003; see below for additional discussion).

Herein, a complete morphological, anatomical, and ultrastructural cuticle study from new and historic specimens of Ginkgo patagonica Berry (1935, 1938) from the Eocene of Patagonia is presented. Based on these remains, the species is more properly recombined to the extinct genus Ginkgoites, and its diagnosis is expanded by adding new epidermal characters. Additionally, hypotheses regarding possible causes for the disappearance of the ginkgophyte clade from the Southern Hemisphere are suggested.

1 Author for correspondence; e-mail: lvillar@macn.gov.ar.

Manuscript received June 2014; revised manuscript received November 2014; electronically published February 18, 2015.
In Argentina, the ginkgophytes, represented by vegetative and reproductive structures, show a continuous record since Carboniferous times. Interestingly, they were never the dominant component in any plant community (Del Fuego et al. 2013).

The leaf genera Ginkgoites Seward and Ginkgophyllum (Saporta) Neuburg occur in Carboniferous and Permian strata from Patagonia (Feruglio 1933, 1942; Cúneo 1987; Escapa and Cúneo 2003) and northwest of Argentina (Archangelsky and Arrondo 1974; Archangelsky and Leguizamón 1980). The three Patagonian Permian species, Ginkgoites eximia (Feruglio) Cúneo, Ginkgoites crassipes (Feistmantel) Feruglio, and Ginkgoites feruglioi (Feruglio) Cúneo, look almost identical to modern Ginkgo leaves (Feruglio 1933; Cúneo 1987; Rothwell and Holt 1997).

During the Triassic, Ginkgoites became more diverse with several taxa inhabiting Patagonia, such as Ginkgoites dutoitii Anderson et Anderson, Ginkgoites palmate (Ratte) Gaedinger et Herbst, and Ginkgoites waldeckensis (Anderson et Anderson) Gaedinger et Herbst, all representing leaf impressions from the El Tranquilo Group, Santa Cruz Province (Azcuy and Baldoni 1990; Gaedinger and Herbst 1999). Records from other areas of Argentina include Ginkgoites truncata Enguelleri (1946) from the Potrerillos Formation, Mendoza Province.

The oldest Argentinean record of Ginkgo-like cutinized leaves is the species Ginkgo acanthiza Geinitz from the Lower Jurassic Paso Flores Formation, Neuquén Province, and it was described as having amphistomatic leaves that are divided into four to eight lobes (Ferugli 1937). In lower Cretaceous strata, ginkgophyte remains are relatively more common and diverse in Patagonia. In the Aaptian sediments of the An teatro de Tic Formation (Baqueró Group, Santa Cruz Province), multilobed leaves described as Ginkgoites ticoensis Archangelsky and Ginkgoites tigrensis Archangelsky were exhumed from two localities (Archangelsky 1965). The latter species occurs intimately associated with the multivotative reproductive organ Karkenia incurva Archangelsky (Archangelsky 1965; Del Fuego and Archangelsky 2001) that has proven to represent a separate lineage (Karkeniaceae) of the ginkgophyte clade (Crae 2013).

Further slightly younger Albian Kachaike Formation (Santa Cruz Province), Lundblad (1971), Del Fuego et al. (2006, 2013), and Passalia (2007) described Ginkgoites skottsbergii Lundblad, a leaf taxon and preserved epidermis that was ultrastructurally described by Del Fuego et al. (2006, 2013). Finally, recent findings in the latest Cretaceous portion of the Lefpán Formation (Chubut Province) also include ginkgophyte leaves and pollen, including specimens with preserved cuticles (Cúneo et al. 2007; Barreda et al. 2012).

In Patagonia and almost the entire Southern Hemisphere, the last record of ginkgoalean leaves is the focus of this contribution. Ginkgo patagonica Berry (1935, 1938) was first described from the middle Eocene Río Pichileufú locality, La Huítrela Formation, Río Negro Province. Later, Traverso (1964) incorporated into the same species additional remains collected by Frenguelli in 1939–1940 from the early Eocene Tufolitas Laguna del Hunco (Chubut Province) by describing the epidermis of several leaves of Ginkgo patagonica using LM.

Material and Methods

Material

Specimens were collected from two different localities (fig. 1). Geographic and stratigraphic data have been previously given by Wilf et al. (2003, 2005). Specimens from the Laguna del Hunco locality in northwestern Chubut Province were collected from lacustrine caldera sediments belonging to the Tufolitas Laguna del Hunco (Aragón and Mazzoni 1997). Based on the 40Ar/39Ar ages of three intercalated ash layers aligned with two palaeomagnetic reversals, this unit is currently assigned to the early Eocene. The most reliable datum is a 40Ar/39Ar age on sanidine from a tuff yielding a recently recalibrated age of 52.2 ± 0.22 Ma (Wilf et al. 2003, 2005; Wilf 2012). The Laguna del Hunco ginkgophyte leaves are exquisitely preserved and occur in low percentages in a megaflora dominated by dicot leaves and secondarily by conifers (Wilf et al. 2005). Additional specimens were recently exhumed at the Río Pichileufú locality in lacustrine deposits of the Río Huítrela Formation that crops out in southwestern Río Negro Province. Volcanic tuffs immediately above the plant fossils yielded a high-precision 40Ar/39Ar age that was recently recalibrated to 47.5 ± 0.05 Ma, approximately 4.3 Myr younger than the fossil lake beds of the Tufolitas Laguna del Hunco (Wilf et al. 2003; Wilf 2012). The ginkgophyte leaves at Río Pichileufú also occur as a minor component of a highly diversified dicot-dominated taphoflora (Berry 1938; Wilf et al. 2005).

In this article, several specimens of Ginkgo patagonica were analyzed: (1) the original specimens from Río Pichileufú described by Berry (1935, 1938) that are housed at the Smithsonian Institution (USNM), including both the figured material housed in the Paleobotany Type Collection and previously unreported cohort material that was found in the Paleobotany Stratigraphic Collection; (2) recently collected macrofossils deposited at the Palaeobotanical Collection of the Palaeontological Museum “Egidio Feruglio” (MPEF-Pb, for Laguna del Hunco, sites LH6–22) and the Paleontological Museum of Bariloche (BAR, for Río Pichileufú, sites RP1–3); and (3) the additional Laguna del Hunco specimens of Frenguelli’s from the Paleobotanical Collection of the La Plata Natural Sciences Museum (LPPb), originally described by Traverso (1964). Slides for LM, SEM, and TEM specimens are deposited at the Paleobotanical Collection of the Argentine Museum of Natural Sciences “Bernardino Rivadavia” with the acronyms BA Pb. The precise locality data for the historic material studied by Berry and Traverso are not available.

Methods

The specimens are compressions and have excellently preserved cuticle fragments that are frequently nearly complete leaf surfaces. To prevent immediate loss of cuticle to the wind on discovery, specimens were quickly plastic-wrapped in the field. Fossil cuticle was prepared for both LM and electron microscopy. The cuticle was easily separated from the matrix.
and cleaned with dilute sodium hypochlorite (5%). The preparations were mounted in glycerine jelly for observation with LM or directly on circular stubs and coated with gold palladium for SEM. Observations were performed with a Philips XL30 TMP at the Electron Microscopy Service of the Argentine Museum of Natural Sciences “Bernardino Rivadavia.” For TEM studies, some cuticle fragments were treated with OsO4 and embedded in Spurr low-viscosity resin (Spurr 1969). Transverse sections (TS) of the cuticles were done with a diamond knife on a SORVAL manual ultramicrotome and mounted

Fig. 1 Location of the early Eocene Laguna del Hunco (Chubut Province) and the middle Eocene Río Pichileufú (Río Negro Province) localities, northwest Patagonia, Argentina.
in single-hole grids coated with Formvar and stained with
\(\text{K MnO}_4 \) (3–10 min) and uranyl acetate (30 s). Observations
were made with a Zeiss EM 109 microscope at the Elec-
tron Microscopy Service of the Cellular Biology Department,
Faculty of Medicine, Buenos Aires University, Argentina.
The below-designated lectotype specimen, a cuticle preparation
mounted in glass by Berry, was studied nondestructively un-
der epifluorescence at the Penn State Paleobotany Laboratory
using the techniques described in Wilf (2012). The terminol-
ogy of Metcalfe and Chalk (1979) was used for stomata clas-
sification; Holloway (1982) and Lyshede (1978, 1982) were
used for ultrastructural descriptions.

Results

Genus—Ginkgoites Seward 1919

Type Species—Ginkgoites sibirica (Heer) Seward 1919

Ginkgoites patagonica (Berry) comb. nov. (Figs. 2–5)

1935. *Ginkgo patagonica* Berry, Torreya 35, p. 11,
figured p. 12.

1938. *Ginkgo patagonica* Berry, Geol Soc Am Spec Pap 12,
p. 58, pl. 10.

1964. *Ginkgo patagonica* Berry, Traverso, Ameghiniana 3,
p. 165, pls. 1, 2.

Emended species diagnosis. Leaves simple, multilobed,
hypostomatic, and petiolate. Leaf flabelliform, deeply incised,
usually lobed, with two major lobes and with two to eight
symmetrical or asymmetrical, secondary, and sometimes
tertiary minor lobes with rounded apices. Veins in a pair en-
tering from the petiole and immediately dichotomizing up to
five times, converging in the apex of each lobe. Adaxial and
abaxial epidermises with striate and rectangular to isodiamet-
ric cells irregularly arranged. Tetracytic-actinocytic stomatal
apparatuses with four to seven papillate subsidiary cells, ran-
domly arranged on the abaxial epidermis. External wall of the
epidermis formed by a cuticle proper, a cuticular membrane,
and remnants of the cell wall. Cuticle proper thin and gran-
ular. Cuticular membrane formed by two thick and reticulate
layers.

Lectotype. USNM 40386c (fig. 3; Berry 1938, pl. 10,
fig. 1), Smithsonian Institution Paleobotanical Collection, Na-
tional Museum of Natural History, Washington, DC.

Syntypes. USNM 40386a (Berry 1938, pl. 10, fig. 4),
USNM 40386b (Berry 1935, p. 12, left; Berry 1938, pl. 10,
fig. 3), USNM 40386d (Berry 1935, p. 12, middle; Berry 1938,
pl. 10, fig. 2), USNM 40386e and 545232 (previously un-
figured).

Additional material studied. MPEF-Pb 1610A, MPEF-Pb
5656–5666; BAR 4360 B; LPPb 10394, LPPb 10395, LPPb
20441; BA Pb Pm. 514–519; LP Pm. 146; BA Pb MEB 257–
259; BA Pb MET 218–220.

All materials housed at the paleobotanical collections of the
Smithsonian Institution (USNM) and the Paleontological Mu-
seum of Bariloche (BAR) were collected from the Río Pi-
chileufú locality, La Huitrera Formation, Río Negro Province;
while those stored at the La Plata Natural Sciences Museum
(LPPb), Argentine Museum of Natural Sciences “Bernardino
Rivadavia” (BAPb), and Paleontological Museum “Egidio Fe-
ruglio” (MPEF-Pb) were collected at the Laguna del Hunco
locality, Tufolitas Laguna del Hunco, Chubut Province.

Type locality and stratigraphic horizon. Río Pichilefú,
Río Negro Province, La Huitrera Formation, middle Eocene.
Age. Middle Eocene (47.7 ± 0.05 Ma).

Type Specimen Remarks

At an unknown time but not long before 1935 (see Berry
1934), E. W. Berry received a single shipment of fossils from
the Río Pichileufú locality, then thought to be Miocene in age,
from mining geologist J. R. Guíñazú. These were housed and
studied at Johns Hopkins University and later transferred to
the Smithsonian Institution Paleobotanical Collection. When
Berry (1935, p. 11; 1938, p. 58) originally described *Ginkgo
patagonica* from Río Pichileufú, he made cuticle preparations
and gave a comprehensive description. He illustrated three
specimens only as sketches and discussed but did not illustrate
cuticle. We were able to correlate two of the three sketches
(Berry 1935, p. 12, left and middle) to surviving specimens,
whereas the third sketch (Berry 1935, p. 12, right) does not
resemble any surviving material from the original collection.
In the 1938 article, Berry photographically figured four speci-
mens that all survive, including the two aforementioned from
the 1935 article, plus the here-designated lectotype and a fourth
specimen (USNM 40386a) that were both not previously il-
lustrated.

It is quite clear from Berry’s (1935) writings, which in-
cluded discussion of cuticle preparation as well as his hand-
labeled identifications on all the USNM material, and from
the fact that he received only one shipment of material from
Río Pichileufú, that USNM 40386c is part of the original
gathering (sensu ICBN) of material on which he based the
species and is therefore qualified to serve as the lectotype.
By the same logic, all the other historic USNM specimens of
Ginkgo patagonica mentioned above, whether figured in the
1930s or not, are reasonably considered as part of the same
original gathering and are here considered syntypes.

Traverso (1964, p. 165) added some epidermal charac-
ters using LM to the original morphological descriptions of
Berry and included a repository (La Plata Natural Sciences
Museum Paleobotanical Collection) for the materials collected
by Frenguellii in 1939–1940 from Laguna del Hunco but did
not emend the original diagnosis. In this article, Berry’s diag-
nosis was emended with the addition of new cuticular and
ultrastructural characters obtained through SEM and TEM
observations.

Leaf Morphology

The leaves are simple, multilobed, hypostomatic, and peti-
olate (fig. 3). The laminae are flabelliform and highly variable
in size, reaching up to 8 cm long and 11.5 cm wide in the
most deeply incised leaves. They are divided into two to eight
symmetrical or asymmetrical lobes. Each lamina shows a deep
incision that forms two lobes of the first order that progres-
sively show to second- and third-order lobing with increased
incision of the leaf apex (fig. 3). First- to third-order lobes are
all lanceolate with rounded apices and have entire margins,

This content downloaded from 128.118.175.245 on Tue, 24 Feb 2015 19:49:36 PM
All use subject to JSTOR Terms and Conditions
and they can be up to 2.7 cm long and 0.4–0.5 cm wide (fig. 3A, 3B, 3F). The deep central incision goes to 95% of the leaf length (fig. 3A–3C, 3F). Each lamina has a slender petiole up to 6.5 cm long and 0.3 cm wide (fig. 3A–3C, 3F), with two vascular strands entering the lamina and immediately dichotomizing up to five times (fig. 3E, 3F). The veins have radially disposed from the base and are partially convergent at the distal margin of each lobe. Depending on the number of incisions, they have a variable concentration (6–14 veins/cm) in the ultimate lobes (fig. 3C–3F).

Fig. 2 *Ginkgoites patagonica* (Berry) comb. nov. Petiolate lobed leaf with preserved cuticle, USNM 40386c, lectotype. A, General view; scale bar = 1 cm. B, Close-up of the lamina cuticle; scale bar = 1 cm. C, Details of the cuticle showing two veins and the stomata disposition between them; scale bar = 500 μm.
Cuticular Structure and Ultrastructure

Adaxial and abaxial epidermises of the lobes are formed by rectangular (up to 137.7 μm long and 17.9 μm wide) to isodiametric (up to 31.1–42.7 μm wide) cells. All the cells are irregularly disposed among the veins, and their walls are slightly thickened, sinuous, and strongly pitted (fig. 4A). The epidermal cells that cover the veins are formed by five to six rows of rectangular cells (up to 78.2–151.2 μm long and 12.7–29.8 μm wide), with anticlinal sinuous and strongly pitted walls similar to the other epidermal cells (fig. 4B, 4D). The external surfaces of both epidermises are striated (fig. 4F).

Stomata are present only on the abaxial epidermis, irregularly arranged between the veins (fig. 4C). The stomatal density is 20–25/mm² (fig. 4C). They show a tetracytic-actinocytic stomatal apparatus that is roughly circular and up to 85.9 μm in diameter, with four to seven subsidiary cells (fig. 4D, 4E). Each subsidiary cell forms a subcircular to elongated papilla of 7.3–9.1 μm in height and 7.6–11.9 μm in width, oriented toward the pit and overarching the suprastomatal aperture (fig. 4F). Guard cells are sunken and reniform (14.8–31.7 μm long and 4.9–8.4 μm wide), with a cuticular ridge surrounding the pit (fig. 4E, 4F).

Ultrastructurally, the external wall of the epidermis is formed by a cuticle proper and a cuticular membrane divided into upper and lower layers (Lyschede 1982; fig. 5A, 5C). Epicuticular waxes cover the entire surface and are irregularly disposed. They have a granular structure and a relatively low electron density. In some areas, waxes reach 0.5 μm thickness (fig. 5A, 5E).

Fig. 3 Ginkgoites patagonica (Berry) nov. comb. Morphological variations of different petiolate leaves showing their symmetry, lobing, and incision characters. MPEF-Pb 1610A, MPEF-Pb 5656–5666, BAR 4360 B specimens. Scale bars = 1 cm.
Fig. 4 Ginkgoites patagonica (Berry) comb. nov. SEM cuticular anatomy. A, Internal view of the adaxial epidermis; BA Pb MEB 257; scale bar = 200 µm. B, Detail of the epidermal cells disposition on the veins in the adaxial epidermis; BA Pb MEB 257; scale bar = 50 µm. C, Internal view of the abaxial epidermis showing the stomata disposition between two veins; BA Pb MEB 259; scale bar = 200 µm. D, Detail of the three stomata in internal view; BA Pb MEB 259; scale bar = 20 µm. E, Details of the internal view of a stomatal apparatus; BA Pb MEB 259; scale bar = 10 µm. F, Details of the external view of the papillate subsidiary cells and sunken guard cells in a stoma; BA Pb MEB 259; scale bar = 10 µm.
Fig. 5 *Ginkgoites patagonica* (Berry) comb. nov. TEM cuticular ultrastructure.

A, Transverse sections (TS) of the external wall of the epidermis with epicuticular waxes on the surface (arrow) and details of the cuticle proper; BA Pb MET 219; scale bar = 1 μm.

B, TS of a stomatal apparatus showing its subsidiary cells and remains of guard cells (arrow); BA Pb MET 219; scale bar = 10 μm.

C, Detail of the epicuticular waxes and the upper and lower layers; BA Pb MET 220; scale bar = 1 μm.

D, Detail of the upper and lower layers in a TS of an anticlinal wall; BA Pb MET 220; scale bar = 1 μm.

E, Detail of the epicuticular waxes, cuticle proper, and upper layer; BA Pb MET 220; scale bar = 1 μm.

EW = epicuticular waxes; *CP* = cuticle proper; *UL* = upper layer; *LL* = lower layer; *SC* = subsidiary cells; *GC* = guard cells.
The cuticle proper is 0.25–0.5 μm thick and has a granular aspect (fig. 5A, 5E). The cuticular membrane is 3.6 μm thick and formed by upper and lower layers (fig. 5C, 5D). The upper layer is 2.1 μm thick and has a higher electron density (fig. 5E). It is reticulated and forms a strong irregularly distributed net. This net is very dense in the upper zone while it is lax in the middle zone, finishing parallel to the lower layer (fig. 5C, 5D). The lower layer is 1.3 μm thick and has a reticulate structure disposed parallel to the surface (fig. 5C, 5D). The remnants of the cell wall are irregular and have a lower electron density, with a thickness of 0.5 μm (fig. 5C). The anticlinal walls have a major development of the lower layer where the pectinaceous microchannels are anastomosed and parallel to the surface. This content downloaded from 128.118.175.245 on Tue, 24 Feb 2015 19:49:36 PM All use subject to JSTOR Terms and Conditions

Discussion

Generic Taxonomy

The use of different names for Ginkgo-like leaves has persisted since the nineteenth century (Heer 1881; Seward 1919; Florin 1936; Harris and Millington 1974; Watson et al. 1999, among others). This situation resulted from many attempts to attribute generic significance to observations of morphological and anatomical cuticle variations.

The importance of incorporating reproductive characters in order to be able to identify ginkgoalean fossil taxa was recently agreed upon (Crane 2013). This consensus resulted from analyzing reproductive structures that are extremely rare in the fossil record. In their pioneering article, Zhou and Zhang (1989) proposed to restrict the use of the generic name Ginkgo to only fossil species that are essentially similar to modern Ginkgo biloba, not only in leaf morphology but also in reproductive organs. The finding of similar fossil leaves in organic attachment to different ginkgoalean reproductive structures confirms the homoplasic nature of the typical ginkgoalean leaf. In this regard, Zhou (1997), in his attempt to perform a cladistic analysis on ginkgoalean taxa, was able to include only very few vegetative characters in his matrix. He also noted that reproductive organs provided most of the characters that could be reliable for phylogenetic interpretations. More recently, Yang et al. (2008) pointed out very clearly that it is uncertain how many isolated fossil leaves assigned to Ginkgo really do belong to it since the most informative characters for generic delimitation are features of the ovule-bearing organs. Therefore, the use of the whole-plant concept for ginkgoaleans (Rothwell and Holt 1997; Kvaček et al. 2005) has become essential for understanding natural taxa, including those with modern representatives. Thus, the fossil representation of the living genus Ginkgo, with more than 100 records, can be confirmed only by a few examples in which both vegetative and reproductive organs occur attached or at least intimately and repeatedly associated (i.e., taphonomically justified; Yang et al. 2008; Zhou et al. 2012).

Even though the whole-plant standard is obviously more realistic, it fails to provide a working approach for the innumerable records of isolated Ginkgo-like leaves that occur all over the world from the Permian through the Neogene. These Ginkgo-like leaves are often included in a ginkgoalean taxa (see, e.g., Zhou 1997; Naugolnykh 2007) because they might belong to more than one natural biological entity at family or generic level. This is why the name Ginkgoites, in spite of some morphological overlap with other similar taxa, for instance, Baiera (Watson et al. 1999), is highly useful as one of the generic names when such fossils cannot be attributed to any natural genus with certainty. Therefore, we propose to transfer the species Ginkgo patagonica to the genus Ginkgoites sensu Watson et al. (1999) based on the preserved morphological, anatomical, and ultrastructural characters of its cuticle.

Comparisons and Species Delimitation

Leaves of Ginkgoites patagonica were compared with the majority of known Cenozoic, Mesozoic, and Paleozoic ginkgoalean leaf species and also with leaves of the living Ginkgo biloba, which are summarized in tables 1 and 2, bringing out their morphologic, anatomic, and ultrastructural epidermal characters. In the following paragraphs, only Ginkgo and Ginkgoites species that have anatomical and ultrastructural cuticular descriptions are compared with Ginkgoites patagonica.

Ginkgo biloba L. has simple and small flabelliform leaves divided into two lobes. The veins are dichotomously forked, and there is a concentration of 18–20 veins/cm. Adaxial and abaxial epidermises have rectangular to polygonal cells. The abaxial epidermal cells are papillate. Stomatal apparatuses are actinocytic, with six to seven papillate subsidiary cells, and are present only on the abaxial surface. The external wall of the epidermis shows a cuticular membrane formed by a compact upper layer and a reticulate lower layer (Villar de Seoane 1997).

Ginkgo craniata Zhou, Quan et Liu 2012 from the late Paleocene Sentinel Butte Formation of the Fort Union Group, North Dakota, and Ginkgo jayinensis Quan, Sun et Zhou 2010 from the Wuyun Formation (early Paleocene) of north-eastern China differ in having semicircular leaves with smooth adaxial epidermis and slightly papillate abaxial epidermis. Stomata are on lower surfaces, are irregularly distributed, and have four to eight papillate subsidiary cells (Quan et al. 2010; Zhou et al. 2012).

Sun et al. (2008) described Ginkgo longifolius (Phillips) Harris and Ginkgo shiguaiensis Sun et al. from the Middle Jurassic of inner Mongolia, China, which differ in having amphistomatous four-lobe leaves. In addition, adaxial and abaxial epidermal cells are smooth, and stomatal apparatuses have four to six papillate subsidiary cells.

Ginkgo taeniata Geinitz has small and flabelliform leaves, six to eight lobed. The veins are dichotomous, with a concentration of 30–40 veins/cm. These impressions were found near Paso Flores, Lower Jurassic of Neuquén Province (Frenguelli 1937).

Ginkgoites patagonica has a similar morphology to Ginkgo cortacea (Sun 1993) except for the anatomy of the epidermal cells that are papillate in the Chinese species. Its ultrastructure was not studied.
<table>
<thead>
<tr>
<th>Species</th>
<th>Period</th>
<th>Origin</th>
<th>Laminae</th>
<th>Ultrastructure</th>
<th>Morphological and Anatomical Features of Ginkgo Extant and Fossil Species</th>
<th>Anatomical characters</th>
<th>Ultrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adaxial cells</td>
<td>Abaxial cells</td>
</tr>
<tr>
<td>Ginkgo biloba L. 1771</td>
<td>Recent</td>
<td>China</td>
<td>Lobed</td>
<td></td>
<td></td>
<td>Smooth</td>
<td>Papillate</td>
</tr>
<tr>
<td>Ginkgo australis (Mc Coy)</td>
<td>Paleogene</td>
<td>Tasmania</td>
<td>Lobed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginkgo crassifolia Florin 1936, Sun 1993</td>
<td>Lower</td>
<td>China</td>
<td>Lobed</td>
<td></td>
<td></td>
<td>Papillate</td>
<td>Papillate</td>
</tr>
<tr>
<td>Ginkgo apulea Zhou et al. 2004</td>
<td>Lower</td>
<td>China</td>
<td>Lobed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginkgo polarsis Zheth 1936, Florin 1936</td>
<td>Lower</td>
<td>North Pole</td>
<td>Lobed</td>
<td></td>
<td></td>
<td>Papillate</td>
<td>Papillate</td>
</tr>
<tr>
<td>Ginkgo shiguaiensis Sun et al. 2008</td>
<td>Lower</td>
<td>China</td>
<td>Lobed</td>
<td></td>
<td></td>
<td>Smooth</td>
<td>Smooth</td>
</tr>
<tr>
<td>Ginkgo yimaensis Zhou et Zhang 1989</td>
<td>Lower</td>
<td>China</td>
<td>Lobed</td>
<td></td>
<td></td>
<td>Smooth</td>
<td>Smooth</td>
</tr>
<tr>
<td>Ginkgo taeniata Geinitz (Frenguelli, 1937)</td>
<td>Jurassic</td>
<td>Argentina/Greenland</td>
<td>Lobed</td>
<td></td>
<td></td>
<td>Papillate</td>
<td>Smooth</td>
</tr>
<tr>
<td>Species</td>
<td>Period</td>
<td>Origin</td>
<td>Laminae</td>
<td>Size (width × length; cm)</td>
<td>Lobes</td>
<td>Veins/μm</td>
<td>Period width (cm)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Ginkgoites patagonica (Berry)</td>
<td>Eocene</td>
<td>Argentina</td>
<td>Lobed</td>
<td>8 × 11.5</td>
<td>4–8</td>
<td>6–14</td>
<td>.3</td>
</tr>
<tr>
<td>comb. nov. (this article)</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>4 × 5</td>
<td>8–12</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Ginkgoites skottsbergii</td>
<td>Albian</td>
<td>Argentina</td>
<td>Lobed</td>
<td>3 × 4</td>
<td>4</td>
<td>12</td>
<td>.1</td>
</tr>
<tr>
<td>Lundblad 1971, Del Fuego et al. 2006</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>5 × 4.5</td>
<td>3–6</td>
<td>18–20</td>
<td>.1</td>
</tr>
<tr>
<td>Ginkgoites ticoensis</td>
<td>Aptian</td>
<td>Argentina</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Archang. 1965, Del Fueyo et al. 2013</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>1.5–10 × 2.5</td>
<td>4–10</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites tigrensis</td>
<td>Aptian</td>
<td>Argentina</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites myrioneurus</td>
<td>Barremian</td>
<td>China</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Yang 2004</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>1.5–10 × 2.5</td>
<td>4–10</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites pluripartita</td>
<td>Lower</td>
<td>Germany</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Seward 1919, Tralau 1968</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>1.5–10 × 2.5</td>
<td>4–10</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites brauniana</td>
<td>Lower</td>
<td>Germany</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Watson et al. 1999</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>1.5–10 × 2.5</td>
<td>4–10</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites multiloba</td>
<td>Lower</td>
<td>Australia</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites obrutschewii</td>
<td>Middle</td>
<td>China</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Seward 1919</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>1.5–10 × 2.5</td>
<td>4–10</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites buttonii</td>
<td>Middle</td>
<td>England</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Heer 1881, Tralau 1968</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>1.5–10 × 2.5</td>
<td>4–10</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites regnellii</td>
<td>Middle</td>
<td>Germany</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Tralau 1968</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>1.5–10 × 2.5</td>
<td>4–10</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites sibirica</td>
<td>Middle</td>
<td>Russia</td>
<td>Lobed</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Seward 1919, Tralau 1968</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>1.5–10 × 2.5</td>
<td>4–10</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Ginkgoites truncata</td>
<td>Triassic</td>
<td>Argentina</td>
<td>Entire</td>
<td>.8–2.5 × 1.6</td>
<td>31–32</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Frenguelli 1946</td>
<td></td>
<td></td>
<td>Lobed</td>
<td>2.5–4.6</td>
<td>31–32</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Ginkgoites feruglioi</td>
<td>Permian</td>
<td>Argentina</td>
<td>Entire</td>
<td>3.0–5.0 × 1.9–3.0</td>
<td>32–45</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>Frenguelli 1946</td>
<td></td>
<td></td>
<td>Lobed</td>
<td>2.5–4.6</td>
<td>31–32</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Ginkgoites eximia</td>
<td>Permian</td>
<td>Argentina</td>
<td>Entire or lobed</td>
<td>3.0–5.0 × 1.9–3.0</td>
<td>32–45</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>Ginkgoites crassipes</td>
<td>Permian</td>
<td>Argentina</td>
<td>Entire</td>
<td>.8 × 3.8</td>
<td>8–18</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
<tr>
<td>Feistmantel (Feruglio 1933)</td>
<td></td>
<td></td>
<td>hypostomatic</td>
<td>1.5–10 × 2.5</td>
<td>4–10</td>
<td>20–30</td>
<td>.1–2</td>
</tr>
</tbody>
</table>
Ginkgoites skottsbergii Lundblad (1971) from the Kachaike Formation, Albion of Santa Cruz Province, has flabelliform and amphiostomatic leaves divided into 8–12 lobes with veins dichotomously forked. Adaxial and abaxial epidermises have isodiametric to polygonal cells and actinocytic stomatal apparatuses with six to eight papillate subsidiary cells. The epidermis wall has a granular external layer and reticulate middle and internal layers (Del Fuego et al. 2006, 2013).

In the Anfiteatro de Tíctó Formation, Aptian of Santa Cruz Province, two ginkgoalean species were found. Ginkgoites tigrensis Archangelsky has simple and small flabelliform leaves with three to six segments. The veins dichotomously forked, and there is a concentration of 18–20 veins/cm. Adaxial and abaxial epidermises have rectangular to isodiametric cells and actinocytic stomatal apparatuses with four to seven striated subsidiary cells. The external wall of the epidermis shows a cuticular membrane formed by a compact upper layer and a reticulate lower layer (Villar de Seoane 1997). Ginkgoites ticoensis Archangelsky shows flabelliform leaves divided into four to five lobes with veins dichotomously forked. Adaxial and abaxial epidermises show papillate cells. Stomata are present in the abaxial surface and have five to seven striated subsidiary cells. The external wall of the epidermis has a granular external layer, a reticulate middle layer, and a fibrillose internal layer (Del Fuego et al. 2006, 2013).

Ginkgoites truncata Frenguelli (1946) from the Cacheuta Series, Triassic of Mendoza Province, presents entire and flabelliform leaves of different sizes (24.5–46 mm long and 8–25 mm wide).

In the valley of Río Genoa (Permian of Chubut Province), the impressions of three species were described: Ginkgoites crassipes Feistmantel shows an entire and flabelliform leaf with a long petiole (Feruglio 1933); Ginkgoites eximia Feruglio (1942) shows entire or bilobed leaves with thin petioles (the veins are radially disposed from the base, with a concentration of 32–45 veins/cm); and Ginkgoites feruglioi Cúneo (1987) has flabelliform and has leaves with long petioles and veins dichotomously forked, with a concentration of 30 veins/cm in the upper margin.

Hill and Carpenter (1999) compared Ginkgoites patagonica with new specimens of Ginkgo australis (Mc Coy) Drinan and Chambers 1986 from the Paleogene (probably Eocene) of Tasmania. Since the Australian materials are only impressions, they were able to compare only the leaf morphology. Thus, these authors indicated that the species from Argentina was more deeply lobed and perhaps slightly asymmetrical. However, these are highly variable traits, suggesting that G. australis and Ginkgoites patagonica might be more closely related than previously thought. This idea is consistent with the large and expanding list of plant taxa that have been found from Paleogene sediments of both southern Australia and Patagonia, indicating large trans-Antarctic paleodistributions (e.g., Wilf et al. 2013).

Evolution of Ginkgophytes in Argentina

The Ginkgoales were an important component of the plant communities of Patagonia from Permian to middle Eocene, with a climax during the early Cretaceous. The comparison of the foliar morphology and diversification among Paleozoic, Mesozoic, and Tertiary ginkgoalean species with Ginkgo biloba showed a multilobed fossil leaf in opposition to a bilobed living leaf (fig. 6). Permian species (Ginkgoites crassipes, Ginkgoites extima, and Ginkgoites feruglioi) are characterized by impressions of entire to bilobed flabelliform leaves from the valley of Río Genoa (Chubut Province).

Ginkgoites truncata, another entire flabelliform leaf, is the only species that was found outside of Patagonia, in the Triassic strata of Cacheuta, Mendoza Province. During the Lower Jurassic, the ginkgoalean species were represented by multilobed leaves of Ginkgo taeniata from Paso Flores, Neuquén Province. At the beginning of Cretaceous, the Ginkgoaceae increased in amount and diversity. In the Aptian sediments of the Anfiteatro de Tíctó Formation (Baqueró Group), a larger number of multilobed leaves were found, such as Ginkgoites ticoensis and Ginkgoites tigrensis. Some specimens of the latter species appeared in organic connection with the female reproductive organ Karkenia incavata Archangelsky 1965, being the first member (at present day, the unique species) belonging to the Karkeniaceae found in the Southern Hemisphere. In the Alban of Kachaike Formation, Ginkgoites skottsbergii was found, a leaf with 9–12 lobes.

Finally, in the early/middle Eocene of Chubut Province, tetratobed leaves of Ginkgoites patagonica were found. After this time, no ginkgoalean leaf remains appeared in the Cenozoic strata of Argentina.

Morphologically, the flabelliform leaves of the Argentinean species showed a varied type of laminae though the geological time. They are entire or bilobed in the Permian and Triassic, multilobed in Jurassic and Cretaceous, and tetratobed in Eocene. This variance in the lamina is similar to the variability in the lamina of the Northern Hemisphere species (Tralau 1968), except in the Cenozoic specimens where Ginkgo adiantoides (Unger) Heer shows flabelliform to reniform leaves with entire to bilobed lamina (Shaparenko 1935).

Ginkgo adiantoides, whose leaves show the modern biloba type, appeared in the early Cretaceous of Siberia and was very abundant during the late Cretaceous and Paleogene of the Northern Hemisphere (Tralau 1968). It had a large distribution in the Cretaceous of Greenland and in the early Cretaceous of Montana, Wyoming, and South Dakota (Shaparenko 1935).

Zhou (1991) made a cladistic analysis of Mesozoic ginkgos, including the order Ginkgoales (Gorozhankin 1904) the female reproductive organs and leaves of the following taxa: Trichopitys (Saporta) Florin, Karkenia Archangelsky, Toretzia Stanislawsky, UmaltolepisKrassilov, Ymaia Zhou and Zhang, Ginkgo ymaensis Zhou and Zhang, and Ginkgo L. In this analysis, Zhou observed that Ginkgo leaves have had a general tendency toward transformation from deeply divided to less divided lamina through geological time, and he indicated that leaves and bracts of Ginkgoales tend to be laminated and petiolate due to planation, webbing, and fusion of telomes and mesomes. In other words, the Argentinean species began with entire or bilobed laminae during Permian and Triassic times, then showed multilobed leaves in Jurassic and Cretaceous strata, and finished with tetratobed laminae in the Eocene.

Disappearance of the Ginkgophytes from the Southern Hemisphere

In the Southern Hemisphere, Ginkgoites is found only in Argentina and apparently Australia, where in each case no fos-
sils thus far can be confidently assigned to the genus Ginkgo. In Argentina, Ginkgoites (Ginkgoites crassipes, Ginkgoites eximia, and Ginkgoites feruglioi) first appears in sediments of Permain age (Feruglio 1933, 1942; Cúneo 1987), and its last appearance is recorded during the middle Eocene (Berry 1935, 1938; this article). In Australia, a probable Ginkgoites (G. australis) is recorded only for the early Cretaceous and Paleogene (Douglas 1970). In contrast, both Ginkgo and Ginkgoites are known from the Northern Hemisphere. Ginkgoites is recorded from the middle Jurassic to the Barremian, while the oldest record for Ginkgo was registered in the early Jurassic of China (where it still grows naturally; Zhou and Zhang 1989), reaching its maximum diversity globally during the Cretaceous (see tables 1, 2).

Possible causes for the disappearance of the clade in the Southern Hemisphere and for its extreme decline in the Northern Hemisphere have been traditionally linked to major climatic, biological, or ecological shifts that probably started during the middle Cretaceous (Seward 1900; Florin 1949; Tralau 1963; Tiffney 1984; Rothwell and Holt 1997; Royer et al. 2003; Crane 2013). However, as in many other extinction events, a combination of causes is probably the most plausible explanation.

The principal cause for the disappearance of the ginkgoalean clade may be associated with climatic changes. Cooling conditions have been suggested in both hemispheres approximately during the Paleogene-Neogene transition as well as a major shift to lower moisture levels at middle latitudes worldwide. In this regard, Umura (1997) suggested lower moisture levels as a possibility for explaining the decrease of the ginkgophytes after the Paleogene. During the Neogene, the climatic conditions of most of Asia and North America changed, but less so in southeastern Asia (including southern China), where warmer and wetter conditions were maintained and therefore helped to protect Ginkgo during the Quaternary (Shaparenko 1935; Tralau 1968).

Southern-latitude floras suffered the loss of many taxa during and at the end of the Eocene, but the majority of losses occurred through the Oligocene and Miocene (Askin and Spicer 1995). The climatic deterioration by the late Eocene–early Oligocene was a result of different factors, especially the dramatic decrease in the ability of the ocean to transport heat into the Southern Hemisphere and especially in Patagonia, where the deepwater opening of the Drake Passage and Tasman Gateway with the rapidly expanding Antarctic ice sheets (Zachos et al. 2001, 2008; Huber and Nof 2006). During the Oligocene, Patagonia had a drastic decrease in plant diversity due to major tectonic and climatic changes. Surface temperatures became colder, and the floras suffered the loss of many mesothermal taxa and communities. A similar decrease in diversity is observed at northern high latitudes (Askin and Spicer 1995).

Ginkgoites patagonica occurred as a minor component in both the Laguna del Hucno (early Eocene) and Río Pichileufú (middle Eocene) floras, which were mostly dominated by dicot taxa with a strong secondary representation of conifers. Remarkably, the mean annual temperature (MAT) and precipitation have been estimated for the Laguna del Hucno flora as 16.6 ± 2.0°C and 1.1 m/yr, respectively, while for Río Pichileufú, a higher though preliminary MAT of 19.2 ± 2.4°C was estimated (Wilf et al. 2003, 2005). Modern Ginkgo grows naturally in mixed mesophytic forest communities of the Yangtze River Valley in China (Wang 1961; Zheng 1992; Ke et al. 1994; Tang et al. 2012). The paleoclimate parameters would indicate a similar climate present at the time of fossil deposition. Both Patagonian floras were part of a subtropical–tropical-like, possibly montane rainforest biome (Wilf et al. 2009) bounded by cooler winters to the south and arid conditions to the north (Wilf et al. 2005).

Another possible cause for ginkgophyte decline may be related to their reproductive biology. For instance, Florin (1949) suggested that because ginkgophytes were not able to develop seed cones, as in conifers or cycads, their success in reproduction and further distribution was limited. Associated with this, a low seed production has also been suggested as a restriction for dispersal. Regarding this, Tiffney (1984) and Rothwell and Holt (1997) have suggested that the post-Cretaceous ginkgophyte decline was related to the extinction of the dinosaurs, since these were probably the main dispersers of their seeds; however, there is no evidence that supports this claim (Hori et al. 1997). Other agents of dispersals could have been the early mammals of the extinct family Multituberculata (Del Tredici 1989); these animals, often known as the rodent of the Mesozoic, were found in the temperate parts of the Northern Hemisphere from the late Jurassic through the Oligocene. Rothwell and Holt (1997 and citations therein) indicated that there is evidence that modern Ginkgo seeds are consumed and dispersed by small mammals such as the red-bellied squirrel (Callosciurus flavimanus var. ningsiensis, which lives in the natural Ginkgo populations in China), the eastern grey squirrel (Sciurus carolinensis, found in planted Ginkgo populations in Canada), and the masked palm civet (Paguma larvata, also from China; Del Tredici et al. 1992).

Finally, paleoenvironmental changes could have also affected the distribution of ginkgophytes; however, Royer et al. (2003) have demonstrated that for the Northern Hemisphere there were no major changes from the Cretaceous through the Eocene in the paleoenvironments occupied by the fossilized ginkgophytes, which mostly grew in riparian zones and up the slopes of adjacent levees. In the Patagonian region, known plant communities including ginkgophytes grew in riparian zones on extensive open plains during the early Cretaceous or deltaic environments in the latest Cretaceous, while by the Eocene, Ginkgoites patagonica was part of plant communities that mostly grew on the margins of lacustrine settings that probably developed at mid- to high altitudes (Wilf 2012). In all cases, ginkgophyte communities were linked to warm and relatively moist (but most probably seasonal) climatic conditions that definitely changed to cooler and drier ones from the middle-late Eocene in southern South America.

Overall, since ginkgophytes represented a mid- to high-latitude lineage, their growth and development were limited by light and temperature. Therefore, major post-Eocene climatic changes, which first affected high latitudes, promoted the ginkgoalean decline in both hemispheres. As mentioned earlier, at least Ginkgo reached its maximum diversity during the Cretaceous at the same time that the angiosperms started to be more prominent within the communities (Wing and Boucher 1998), so it is possible that the angiosperm competition also played a role in the same process that affected all gymnosperms in both hemispheres (Royer et al. 2003;
Fig. 6 A, *Ginkgoites patagonica* (Berry) comb. nov. Leaf morphology variations. B, *Ginkgo biloba* L. leaf morphology variations. Modified from Tralau (1968).
Archangelsky et al. 2009), perhaps more accentuated for the ginkgophytes in southernmost regions.

From a taxonomical viewpoint, however, it would be of particular interest to elucidate which particular internal ginkgophyte lineage (or clade) disappeared from the Southern Hemisphere record. According to Zhou (1997) and Del Fueyo and Archangelsky (2001), the ginkgophytes were represented by three clades or evolutionary lineages. Based on a whole-plant record, only the Mesozoic family Karkeniaceae has been clearly recorded in the Southern Hemisphere (Archangelsky 1965). This had prompted Krassilov (1970), after discovering similar materials in Asia, to define the family Karkeniaceae, thus taxonomically separating multiovulate organs (Karkeniaceae) from the classical two- to three-ovulate Ginkgoaceae (see also Zhou et al. 2002). However, a major point is how homologous Karkenia and Ginkgo reproductive structures are. In his recent contribution on Ginkgo, Crane (2013, p. 116) explicitly said on Karkenia, “I was skeptical whether they had anything to do with living ginkgo,” although he accepted ginkgoalean affinity of Karkenia after these reproductive structures with clearly Ginkgo-like leaves were found in intimate association in different and far-distant regions such as Asia and South America, as recorded by Archangelsky (1965), Krassilov (1970), and Zhou et al. (2002). In any case, as Crane (2013) suggested, Karkenia-like plants probably represent an ancient ginkgo lineage that we still do not understand. It is noteworthy that all Cretaceous-Paleogene leaf records belong to the multilobed type, including those of Ginkgoites patagonica in the Southern Hemisphere. A similar case seems to be present in Australia, with the species G. australis apparently extending its range throughout the Paleogene (Drinnan and Chambers 1986; Douglas 1994; Hill and Carpenter 1999). In this case, as pointed out by Crane (2013), it is quite possible that all of these Southern Hemisphere ginkgoaleans were Karkenia-like plants that survived the K-Pg boundary event. On the contrary, the Northern Hemisphere record suggests that a trend from lobed to entire leaves existed from the Jurassic through the Paleogene, culminating with the modern Ginkgo biloba. Does this mean that the ginkgoaceous (true ginkgophyte) lineage or clade (?) was never present in the Southern Hemisphere? It could be the case; however, it can be tested only after reproductive organs associated with late Cretaceous and Paleogene leaves are found.

Conclusions

Based on the evidence herein provided, the new combination Ginkgoites patagonica for the Patagonian Eocene fossils previously assigned to Ginkgo patagonica is proposed. This new combination and emended diagnosis are supported by morphological, anatomical, and ultrastructural studies and...
comparison of the Patagonian materials and other Ginkgoites and Ginkgo-like leaves from both hemispheres.

The comparison between Ginkgoites patagonica and the other Ginkgoites Argentinian species showed the following similarities: Ginkgoites patagonica and Ginkgoites ticoensis have hypostomatic lobed leaves, a granular cuticle proper, and a reticulate lower layer in the cuticular membrane. Ginkgoites patagonica and Ginkgoites tigrensis have tetracytic-actinocytic stomatal apparatuses with papillate subsidiary cells and a reticulate lower layer in the cuticular membrane. Ginkgoites patagonica and Ginkgoites skottsbergii have a granular cuticle proper and reticulate upper and lower layers in the cuticular membrane. On the other hand, Ginkgoites patagonica differs from Ginkgo biloba in having four- to eight-lobed leaves, striate adaxial and abaxial epidermal cells, tetracytic-actinocytic stomatal apparatuses, granular cuticle proper, and reticulate upper layer in the cuticular membrane.

The homoplastic nature of most of the foliar characters identified in fossil and living ginkgophytes does not allow a clear and natural affinity for isolated leaves, although some of these characters can be useful for species delimitation. Temperatures of the southern oceans show a striking change during the Eocene-Oligocene transition. The dramatic climatic deterioration at the beginning of the Oligocene that occurred in the Southern Hemisphere probably influenced the extinction of Ginkgoites in Patagonia and the whole Southern Hemisphere. At the beginning of the Eocene, Ginkgoites patagonica was present in the plant communities and can be considered the last representative of a poorly understood (at the whole-plant level) southern ginkgophyte lineage distinct from the lineage of Ginkgo biloba in the Northern Hemisphere.

Acknowledgments

We are grateful to the editor, Dr. Mike Dunn, and two anonymous reviewers for all the valuable suggestions that have improved our article. Thanks are due to Dr. Analía Arthabe and Lic. Daniel Ganuzza for providing the material from La Plata Natural Sciences Museum; Isabel Farias for technical assistance in the preparation of materials for TEM; Lic. Fabián Tricárco for the technical assistance in the Electron Microscopy Service at the Argentine Museum of Natural Sciences “Bernardino Rivadavia” for SEM; Lic. Mariana López Ravasio for the technical assistance in the Transmission Electron Microscopy Service at the Department of Cellular Biology (Medicine, Buenos Aires University); J. Wingerath for his assistance at USNM; and K. Johnson and S. Wilf for field assistance. National Science Foundation grant DEB-0918932 to M. A. Gandolfo, NSF grant DEB-0919071 to N. Rubén Cúneo and P. Wilf, and CONICET grant 12410 to N. Rubén Cúneo supported this research.

Literature Cited